Home Print this page Email this page Small font size Default font size Increase font size
Users Online: 172
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2014  |  Volume : 3  |  Issue : 1  |  Page : 28-33

Evaluation of in vivo effects of Oxytocin on coagulation of parturient during cesarean delivery by thromboelastography


Department of Anesthesia and Critical Care, Isfahan University of Medical Sciences, Isfahan, Iran

Date of Web Publication19-May-2014

Correspondence Address:
Mohammad Golparvar
Department of Anesthesia and Critical Care, Isfahan University of Medical Sciences, Isfahan
Iran
Login to access the Email id

Source of Support: This works is funded by the research department, faculty of medicine, Isfahan University of Medical Sciences, through the research project number 392297, Conflict of Interest: None


DOI: 10.4103/2279-042X.132707

Rights and Permissions
  Abstract 

Objective: Oxytocin routinely used as an uterotonic drug in cesarean delivery. Clothing problems, adverse effects on fibrinogen and bleeding were presented as side effects of oxytocin. In in vivo investigation, modest hypercoagulable state was suggested as a side effect for infusion of oxytocin in parturients. In this study, effects of two different infusion rates of oxytocin on coagulation of parturient were evaluated during cesarean delivery.
Methods: In a randomized double-blinded clinical trial, 84 healthy parturient in two equal groups took oxytocin infusion with the rate of 15 IU/h (Group A) or 30 IU/h (Group B), after the umbilical cord clamping. Coagulation status measured 30 min after beginning of infusion by thromboelastography. Data were analyzed by χ2 , paired sample test and ANOVA considering as significant at P < 0.05.
Findings: The mean (standard deviation) of variables in Groups A and B were 2.4024 (0.86) and 2.0429 (0.68) for K (kinetics of clot development), 55.4429 (11.30) and 60.7595 (10.41) for α (speed of clot strengthening) and 59.779 (19.15) and 70.61 (11.30) for maximum amplitude (maximum clot strength), respectively. The P values for these variables were 0.036, 0.028 and <0.001, respectively; these changes are consistent with increasing coagulability. Other measures did not have significant differences.
Conclusion: This in vivo investigation clarified that increasing infusion rate of oxytocin to 30 IU/h can augment coagulability in term parturients.

Keywords: Cesarean delivery; coagulation; Oxytocin; thromboelastography


How to cite this article:
Golparvar M, Esterabi M, Talakoub R, Saryazdi HH. Evaluation of in vivo effects of Oxytocin on coagulation of parturient during cesarean delivery by thromboelastography. J Res Pharm Pract 2014;3:28-33

How to cite this URL:
Golparvar M, Esterabi M, Talakoub R, Saryazdi HH. Evaluation of in vivo effects of Oxytocin on coagulation of parturient during cesarean delivery by thromboelastography. J Res Pharm Pract [serial online] 2014 [cited 2018 Jan 18];3:28-33. Available from: http://www.jrpp.net/text.asp?2014/3/1/28/132707


  Introduction Top


The rate of delivery by cesarean section has increased dramatically in developed [1],[2],[3] and developing [4],[5] countries since four decades ago and now it is one of the most commonly performed major operations in women throughout the world. [6] Postpartum hemorrhage can follow vaginal delivery or cesarean section and it is a major cause of maternal morbidity and mortality [7],[8],[9] in most cases which relates to uterine atony. [10],[11],[12]

In the management protocol of treatment of uterine atony or hypotony, administration of oxytocin is in early steps, [13],[14],[15] in addition, oxytocin is routinely used as an uterotonic for prophylaxis. [16],[17],[18]

The guidelines of the Royal College of Obstetricians and Gynecologists on cesarean section recommend a slow intravenous bolus dose of 5 IU of oxytocin after delivery of the infant. [19]

In settings where an oxytocin bolus is used routinely, an additional infusion of oxytocin may be required if hemorrhage occurs. [20] An alternative practice in the United States recommends the use of an oxytocin infusion instead of a bolus dose. [21]

Clothing problems, adverse effects on fibrinogen and bleeding were presented as side-effects of oxytocin. [22],[23],[24] The frequency and mechanism of these side-effects is poorly understood. [25]

In an in vitro study, Butwick studied the effects of two different infusion rates of oxytocin on clot formation in whole blood of healthy term parturients by thromboelastography and concluded that exogenous oxytocin is associated with modest hypercoagulable effects in the maternal blood. [26]

Butwick finding is in contrast to the known side-effects and adverse reactions of oxytocin on coagulation [22],[23],[24] and was based on an in vitro investigation, so this clinical trial designed to evaluate the effects of two different infusion rates of oxytocin on coagulation and clot formation of healthy parturients in an in vivo study by thrombolelastography.


  Methods Top


After approval by the ethical committee and obtaining informed concept, 126 parturient who were a candidate for elective cesarean section were assessed for eligibility to be included in the study. A total of 35 patients did not accept spinal anesthesia for their delivery, one of them had anatomical abnormality in her spine and 6 parturients were suffering from diabetes and hypertension, so finally 84 of assessed patients entered to this prospective randomized double blinded clinical trial in a simple sampling method.

Participants had American society of anesthesiologists health status classification 1 and 2 and gestational age between 36 and 40 weeks without sign, symptoms and history of coagulation abnormality; also patients who took magnesium sulfate or non-steroidal anti-inflammation drugs in recent week or spinal column abnormality did not match the inclusion criteria of the study. Need to more doses of oxytocin or other drugs for enhancing uterus contraction, transfusion of blood products and administration of magnesium sulfate or calcium gluconate (or chloride) during section were excluding criteria of the study.

All participants were fasted for 8 h before section and took 2 mL/kg fluids (1/3 dextrose, 2/3 saline) during this period. After positioning of participant on the operating table (in 15° leftward tilt), standard monitoring was applied to all participants including electrocardiography, blood pressure, temperature and saturation of hemoglobin by oxygen (SpO 2 ) and basal vital signs measured, then 10 mL/kg ringer's lactate solution infused before spinal anesthesia.

Spinal anesthesia was performed in a sitting position by injection of 12.5 mg of bupivacaine (without barbotage) at the L2-L3 or L3-L4 interspace through midline approach with a 25-gauge Quincke needle. Patients were placed in the supine position (in 15° leftward tilt) after spinal anesthesia. Supplemental oxygen was administered (5-8 L/min) through a face mask.



Patients randomly divided in two groups according to the random list generated by randomized allocation software [27] to take their special coded drug. After delivery and clamping of umbilical cord, 2 μg/kg fentanyl and 1-2 mg midazolam prescribed intravenously as sedative. Infusion of oxytocin (Oxytip® , Caspaitamin, Tehran, Iran) begun by infusing coded syringe through infusion pump in a similar rate of 60 mL/h in all participants. Oxytocin were prepared in similar 60 mL infusion pump syringes by a coworker of study in two concentrations (0.25 IU/mL for Group A and 0.5 IU/mL for Group B) and coded according to cods created by randomized allocation software. All codes remained unclear for other co-workers of the study until the end of collecting data period.

At 30 min after beginning of infusion of oxytocin, 2 mL of participant blood were taken in atraumatized manner from the antecubital vein and immediately tested by thromboelastography in the operating room lab. Systolic, diastolic and mean blood pressure, respiratory rate (breaths per minute), temperature (measured by coated probe from axillary fossa) and SpO 2 were measured and recorded every 5 min during surgery.

Uterus contraction scored by a surgeon as relax, semi-contract, contract and full contract after delivery of the placenta and before returning of the uterus to the abdominal cavity. Hypotension (systolic blood pressure <90 mmHg) was treated with a rapid infusion of crystalloid solution and if unresolved in 5 min, it was treated with ephedrine (5 mg-venous bolus); also, heart rate under 50 beat/min without hypotension was treated by intravenous administration of 1 mg bolus dose of atropine. All these interventions were recorded in dose and times of prescription. The maximum level of sensory block was evaluated 20 min after the end of bupivacaine injection.

At the end of collecting data (in all participants), codes of randomization opened and data analyzed by Chi-square, paired sample test and repeated measured ANOVA in the Statistical Package for the Social Sciences (SPSS) for windows (SPSS, Chicago, IL, USA) version 20. Differences considered significant at level of 0.05.


  Results Top


This study evaluated coagulation status in 84 parturients during cesarean section. The mean standard deviation (SD) of parturient age, parity and gestational ages of all participants were 28.5 (4.63) years, 2.29 (0.86) and 37.45 (0.55) weeks, respectively. Two groups of the study didn't show significant differences in comparison of means of age (P = 0.963) and frequency distribution of parity (P = 0.079) and gestational ages (P = 0.111) [Table 1].

The results of this study demonstrated that infusion of oxytocin 15 unit/h and 30 unit/h have different effects on measures of thromboelastography regarding the mean of K (the time between initiation of clot formation to 20 mm widening of two branches of thromboelastorgraphy curve) the mean of α (the angle between two branches of thromboelastorgraphy curve) and the mean of maximal amplitude (MA) (the MA of thromboelastorgraphy curve) in two groups [Table 2]. Other measures of thromboelastography didn't show significant differences in two groups.
Table 1: Frequency distribution of participants regarding parity and gestational ages

Click here to view
Table 2: Mean of thromboelastographic parameters in two study groups

Click here to view


Participants in two groups did not have significant differences in temperature, respiratory rate, heart rate, SpO 2 , systolic, diastolic and mean blood pressures before induction of anesthesia and during the surgery [Figure 1].
Figure 1: Mean of SpO2 (saturation of hemoglobin by oxygen), Blood pressures (systolic, diastolic and mean), heart rate and temperature during cesarean section in two study groups (Group A = Receiving oxytocin 15 units/h, Group B = Receiving oxytocin 30 units/h)

Click here to view


The mean dose of ephedrine for treating hypotension was similar in both groups; also the mean dose of midazolam and fentanyl did not have any significant differences between two groups [Table 3].
Table 3: Mean doses of ephedrine, midazolam and fentanyl used in two study groups

Click here to view



  Discussion Top


The purpose of this study was to evaluate in vivo effects of two different infusion rates of oxytocin on parturient coagulation by thromboelastography; in this double blinded clinical trial, we found that oxytocin infusion at a rate of 30 IU/h in comparison to 15 IU/h causes a significant decrease in K and increase in α and MA variables of thromboelastography. These changes are according to increase in coagulability. In fact, in thromboelastography, K represents the kinetics of clot development, α reflects the speed of clot strengthening, mostly affected by fibrinogen levels and in a lesser degree by platelet function and MA represents the maximum clot strength, mainly affected by platelet function and to a lesser extent by fibrin. [28] Therefore, probably the mechanisms of effects of oxytocin on coagulation are through affecting platelet function (such as increasing aggregation) and enhancing degradation of fibrinogen to fibrin.

Our results in major parts are in line with Butwick findings. [26] Their study showed a decrease of R and K and increase in α and MA, but in the present study, R did not have significant differences in two groups. Differences in R changes between Butwick and the present study can be related to differences in the kind of these two studies, whereas Butwick study was an in vitro research but we did our study in vivo.

In several drug information resources, adverse effects on hemostasis such as afibrinogenemia, hematoma formation and bleeding are mentioned for oxytocin; [22],[23],[24],[25] while in this study these kinds of complications have not been evaluated, but our findings (decreasing of K and increasing of α and MA in increased oxytocin infusion rate group) can be translated to augmentation of coagulation by higher levels of oxytocin which may not support the mentioned side-effects for oxytocin.

This in vivo investigation clarified that increasing infusion rate of oxytocin to 30 IU/h can augment coagulability in term parturients. We did not study the effects of bolus doses of oxytocin (a more common approach for prescribing oxytocin in cesarean section) on coagulation and did not follow patients for evaluating postpartum bleeding or hematoma formation, which can be the subject for future studies in this field.


  Author's Contribution Top


Golparvar M. MD: Data base search, Idea of study, Proposal preparation, Manuscript writing, Revisions correction and writing. Esterabi M. MD: Proposal preparation, Data collection, Manuscript writing. Talakoub R. MD: Data base search, Data collection, Manuscript writing. Saryazdi H. H. MD: Idea of study, Data collection, Manuscript writing.

 
  References Top

1.Tollånes MC. Increased rate of Caesarean sections-Causes and consequences. Tidsskr Nor Laegeforen 2009;129:1329-31.  Back to cited text no. 1
    
2.Fairley L, Dundas R, Leyland AH. The influence of both individual and area based socioeconomic status on temporal trends in Caesarean sections in Scotland 1980-2000. BMC Public Health 2011;11:330.  Back to cited text no. 2
    
3.Alves B, Sheikh A. Investigating the relationship between affluence and elective caesarean sections. BJOG 2005;112:994-6.  Back to cited text no. 3
    
4.Thomas J, Paranjothy S, Royal College of Obstetricians and Gynaecologists Clinical Effectiveness Support Unit. National sentinel caesarean section audit report. Royal College of Obstetricians and Gynaecologists. BMJ 2004;328:665.  Back to cited text no. 4
    
5.Cai WW, Marks JS, Chen CH, Zhuang YX, Morris L, Harris JR. Increased cesarean section rates and emerging patterns of health insurance in Shanghai, China. Am J Public Health 1998;88:777-80.  Back to cited text no. 5
    
6.Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Mathews TJ, Kirmeyer S, et al. Births: Final data for 2007. Natl Vital Stat Rep 2010;58:1-85.  Back to cited text no. 6
    
7.Ibrahim M, Ziegler C, Klam SL, Wieczorek P, Abenhaim HA. Incidence, indications, and predictors of adverse outcomes of postpartum hysterectomies: 20-year experience in a tertiary care centre. J Obstet Gynaecol Can 2014;36:14-20.  Back to cited text no. 7
    
8.Mehrabadi A, Liu S, Bartholomew S, Hutcheon JA, Kramer MS, Liston RM, et al. Temporal trends in postpartum hemorrhage and severe postpartum hemorrhage in Canada from 2003 to 2010. J Obstet Gynaecol Can 2014;36:21-33.  Back to cited text no. 8
    
9.Mousa HA, Alfirevic Z. Treatment for primary postpartum haemorrhage. Cochrane Database Syst Rev 2007; Jan 24;(1) :CD003249.  Back to cited text no. 9
    
10.Montufar-Rueda C, Rodriguez L, Jarquin JD, Barboza A, Bustillo MC, Marin F, et al. Severe postpartum hemorrhage from uterine atony: A multicentric study. J Pregnancy 2013; Article ID: 525914.  Back to cited text no. 10
    
11.Dildy GA 3 rd . Postpartum hemorrhage: New management options. Clin Obstet Gynecol 2002;45:330-44.  Back to cited text no. 11
    
12.Combs CA, Murphy EL, Laros RK Jr. Factors associated with postpartum hemorrhage with vaginal birth. Obstet Gynecol 1991;77:69-76.  Back to cited text no. 12
    
13.Bohlmann MK, Rath W. Medical prevention and treatment of postpartum hemorrhage: A comparison of different guidelines. Arch Gynecol Obstet 2014 Mar; 289:555-67.  Back to cited text no. 13
    
14.Prata N, Bell S, Weidert K. Prevention of postpartum hemorrhage in low-resource settings: Current perspectives. Int J Womens Health 2013;5:737-52.  Back to cited text no. 14
    
15.Belfort MA. Overview of postpartum hemorrhage. Up-to-date Available from: http://www.uptodate.com/contents/overview-of-postpartum-hemorrhage. [Last updated on 2014 Feb 10].  Back to cited text no. 15
    
16.Westhoff G, Cotter AM, Tolosa JE. Prophylactic oxytocin for the third stage of labour to prevent postpartum haemorrhage. Cochrane Database Syst Rev 2013;10:CD001808.  Back to cited text no. 16
    
17.Elbourne DR, Prendiville WJ, Carroli G, Wood J, McDonald S. Prophylactic use of oxytocin in the third stage of labour. Cochrane Database Syst Rev. 2013;10:CD001808.  Back to cited text no. 17
    
18.Cunningham FG, Leveno KJ, Bloom SL, Hauth JC, Gilstrap II LC, Wenstrom KD. Williams Obstetrics. 23 rd ed. New York, (NY): McGraw Hill Medical; 2010. p. 399.  Back to cited text no. 18
    
19.National Collaborating Centre for Women′s and Children′s Health. Caesarean Section. Clinical Guideline. London NW1 4RGRCOG Press; 2004.  Back to cited text no. 19
    
20.Sheehan SR, Montgomery AA, Carey M, McAuliffe FM, Eogan M, Gleeson R, et al. Oxytocin bolus versus oxytocin bolus and infusion for control of blood loss at elective caesarean section: Double blind, placebo controlled, randomised trial. BMJ 2011;343:d4661.  Back to cited text no. 20
    
21.American College of Obstetricians and Gynecologists. ACOG Practice Bulletin: Clinical Management Guidelines for Obstetrician-Gynecologists Number 76, October 2006: Postpartum hemorrhage. Obstet Gynecol 2006;108:1039-47.  Back to cited text no. 21
    
22.Available from: http://www.drugs.com/sfx/oxytocin-side-effects.html. [Last Accessed on 2014 Feb 13].  Back to cited text no. 22
    
23.Available from: http://www.uptodate.com/contents/oxytocin-drug-information?source=see_link and utdPopup=true. [Last Accessed on 2014 Feb 13].  Back to cited text no. 23
    
24.Available from: http://www.medicinenet.com/oxytocin-injectable/article.htm. [Last Accessed on 2014 Feb 13].  Back to cited text no. 24
    
25.Available from: http://www.services.medicines.org.uk/assethosting/assets/printable/o/x/oxytocin/printable. 1946_529_2198.pdf. [Last Accessed on 2014 Feb 13].  Back to cited text no. 25
    
26.Butwick A, Harter S. An in vitro investigation of the coagulation effects of exogenous oxytocin using thromboelastography in healthy parturients. Anesth Analg 2011;113:323-6.  Back to cited text no. 26
    
27.Saghaei M. Random allocation software for parallel group randomized trials. BMC Med Res Methodol 2004;4:26.  Back to cited text no. 27
    
28.Staikou C, Paraskeva A, Fassoulaki A. The impact of 30 ml/kg hydroxyethyl starch 130/0.4 vs. hydroxyethyl starch 130/0.42 on coagulation in patients undergoing abdominal surgery. Indian J Med Res 2012;136:445-50.  Back to cited text no. 28
    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Methods
Results
Discussion
Author's Contrib...
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed1651    
    Printed42    
    Emailed0    
    PDF Downloaded216    
    Comments [Add]    

Recommend this journal